Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems
Authors
Abstract:
some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weighted average are not able to produce safe outputs when obtaining a correct output is impossible and also both of them are not able to perform appropriately in small error limit. In the present paper, delivering a voter for safety system, Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed. The above mentioned model is trained through Hybrid learning algorithm that is effective and using basic Fuzzy inference system, subtractive clustering and fuzzy C-means method. Results show that delivered voter produced more safety outputs especially for small error amplitude.Keywords: ANFIS, Adaptive Neuro-Fuzzy Inference System, Voting Algorithm, Fault Tolerant Systems, Safety-Critical Systems.
similar resources
voting algorithm based on adaptive neuro fuzzy inference system for fault tolerant systems
some applications are critical and must designed fault tolerant system. usually voting algorithm is one of the principle elements of a fault tolerant system. two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. majority confronts with the problem of threshold limits and voter of weight...
full textdesigning unmanned aerial vehicle based on neuro-fuzzy systems
در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...
ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
full textA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
full textMy Resources
Journal title
volume 8 issue 1
pages 119- 128
publication date 2017-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023