Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

Authors

  • Abbas Karimi Department of computer engineering, Faculty of Engineering, Arak Branch, Islamic Azad University, Arak, Markazi, Iran
  • Masoumeh Pourhasan Department of computer engineering, Faculty of Engineering, Chalous Branch, Islamic Azad University, Chalous, Mazandaran, Iran
Abstract:

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weighted average are not able to produce safe outputs when obtaining a correct output is impossible and also both of them are not able to perform appropriately in small error limit. In the present paper, delivering a voter for safety system, Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed. The above mentioned model is trained through Hybrid learning algorithm that is effective and using basic Fuzzy inference system, subtractive clustering and fuzzy C-means method. Results show that delivered voter produced more safety outputs especially for small error amplitude.Keywords: ANFIS, Adaptive Neuro-Fuzzy Inference System, Voting Algorithm, Fault Tolerant Systems, Safety-Critical Systems.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

voting algorithm based on adaptive neuro fuzzy inference system for fault tolerant systems

some applications are critical and must designed fault tolerant system. usually voting algorithm is one of the principle elements of a fault tolerant system. two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. majority confronts with the problem of threshold limits and voter of weight...

full text

designing unmanned aerial vehicle based on neuro-fuzzy systems

در این پایان نامه، کنترل نرو-فازی در پرنده هدایت پذیر از دور (پهپاد) استفاده شده است ابتدا در روش پیشنهادی اول، کنترل کننده نرو-فازی توسط مجموعه اطلاعات یک کنترل کننده pid به صورت off-line آموزش دیده است و در روش دوم یک کنترل کننده نرو-فازی on-line مبتنی بر شناسایی سیستم توسط شبکه عصبی rbf پیشنهاد شده است. سپس کاربرد این کنترل کننده در پهپاد بررسی شده است و مقایسه ای ما بین کنترل کننده های معمو...

ADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE

The  tunnel  boring  machine  (TBM)  penetration  rate  estimation  is  one  of  the  crucial  and complex  tasks  encountered  frequently  to  excavate  the  mechanical  tunnels.  Estimating  the machine  penetration  rate  may  reduce  the  risks  related  to  high  capital  costs  typical  for excavation  operation.  Thus  establishing  a  relationship  between  rock  properties  and  TBM pe...

full text

A Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation

In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  119- 128

publication date 2017-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023